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1 Introduction

The stability of the �nancial sector is particularly vulnerable to large-scale �nancial institu-

tions because of the active role played by these �rms in the wholesale payment and security

settlement system and the outstanding size of their liabilities. As dramatically exempli�ed by

the collapse of Lehman Brothers in 2007, large shocks transmitted by big banks can be propa-

gated rapidly across the �nancial system and reach the real sector at a global scale. This has

motivated a new international regulatory framework for the so-called Systemically-Important

Financial Institutions (SIFIs), requiring capital surcharges, additional liquidity bu¤ers, and

tighter supervision. More generally, during periods of market turmoil and economic distress

in which �nancial assets are prone to move together (King and Wadhwani, 1990; Ang et al.

2006), even shocks originated in small- and medium-sized banks can initiate spirals of systemic

contagion. This raises the important issue of determining how vulnerable the �nancial system

is to shocks di¤ering in intensity and possibly transmitted by banks exhibiting di¤erent repre-

sentative characteristics. In spite of the growing literature on systemic-risk modeling, the key

question of how big an individual loss needs to be in order to spill over the whole system, given

the nature of the transmitting bank, has received little attention.

The main aim of this paper is to provide greater understanding on systemic contagion by

documenting heterogeneous patterns in the intensity of tail-comovements as a function of the

size of the triggering shock, a bank-speci�c latent function that we shall refer to as Marginal

Response Pro�le (MRP) in the sequel. Because the MRP is highly idiosyncratic and varies

on a bank-to-banks basis, we characterize the average shape of this function attending to dif-

ferent SIFI-related characteristics, such as size, short-term wholesale funding, and volume of

o¤-balance sheet items. Systemic contagion is captured in our approach by a signi�cant co-

movement between the left tail of the conditional distribution of the returns of the system and

a contemporaneous balance-sheet contraction in an individual bank. This phenomenon occurs

when reductions in the market value of the assets held by the individual bank are transmitted

into the overall system, for instance, through the �re-sales channel in a characteristic context

of strong asset commonality; see, among others, Brunnermeier and Pedersen (2009) and Green-

wood et al. (2015). The expected size of tail co-movements depends mainly on the marginal

sensibility of the system to a speci�c bank and the magnitude of the triggering shock.1 Nat-

urally, the whole system exhibits di¤erent sensibilities to banks with di¤erent characteristics

which, furthermore, need not necessarily be independent of the intensity of the triggering shock.

As a result, systemic contagion could be feautured by a nonlinear MRP, such that the expected

impact of a shock could be endogenously ampli�ed as a function of its relative size.

1Triggering shocks can be either exogenous (e.g., an idiosyncratic event such as the failure of a �nancial

institution), or endogenous (such as a macroeconomic imbalance); see ECB (2009) for further details.
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In this paper, we characterize empirically the MRP that features the contribution of individ-

ual banks to the total risk of the system in the U.S. banking sector. Adrian and Brunnermeier

(2016) proposed an econometric framework for estimating time-varying measures of systemic

risk that can be conveniently adapted for this purpose. The so-called CoVaR approach builds

on quantile-regression estimates of a model that relates linearly the returns of the system to

the returns of an individual bank. This model assumes implicitly a constant MRP in which a

shock in the left tail of an individual bank generates the same characteristic response in the left

tail of the system, independently of its magnitude. This restrictive assumption can be relaxed

to allow individual shocks to non-linearly feed into the left tail of the system as a function of

their relative size. In our approach, we consider a piecewise-threshold-linear decomposition that

splits exogenously the empirical distribution of the standardized returns of individual banks

into di¤erent buckets or statistical classes characterized by the quintiles of signed returns. This

allows us to appraise heterogeneous patterns characterizing the MRP of the system and make

comparisons on a standardized basis. Furthermore, the empirical suitability of the model can

be tested against meaningful alternatives.

We estimate the shape of the system�s MRP building on the both bank holding companies

and commercial banks which are publicly traded in the U.S. stock market over the period

period January 1990 through December 2014. We characterize MRP empirically at the 5%

shortfall probability level using quantile regression and controlling for di¤erent market-wide

environmental conditions. The main evidence from this analysis reveals fairly heterogeneous

response patterns across the size of the triggering shocks, and across size- and other SIFI-related

characteristics of the bank transmitting the shock. Consistent with previous evidence, the

banking system is much more vulnerable to shocks in large banks, but our study complements

this well-known fact by uncovering a number of additional features. In particular, for the class

of large-scale banks in the top size-sorted quartile, the cross-sectional average MRP of the

system in an adverse scenario exhibits a strong sensitivity to losses which is surprisingly stable.

Accordingly, the banking system is fairly vulnerable to large banks and even relative small

balance-sheet contractions in these banks can feed into the system. Additionally, whereas the

cross-sectional variability of the sensitivity coe¢ cient estimates is rather low for most extreme

losses, the marginal response against small losses is much more noisy and, hence, subject to

greater uncertainty. The overall evidence largely justi�es the need for tighter supervision of

complex institutions. In contrast, for the class of small and medium-sized banks in the bottom

quartile, the overall system shows a considerable degree of resilience and only large relative

movements are able to feed into the left tail of the system. The coe¢ cients that characterize

the MRP of the system against shocks to small banks are, in any case, considerably smaller.

This evidence is relevant from a regulatory perspective for at least two reasons. First, it

provides more precise insight on the systemic interrelations that link losses in individual banks
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to losses in the overall �nancial system, revealing the empirical predominance of nonlinear re-

sponses. This has clear implications, for instance, for systemic-risk measurement, since extant

models, such as Adrian and Brunnermeir�s, assumes constant coe¢ cients. Second, �nancial

regulators set rules that must apply on banks with fairly heterogeneous characteristics. Those

rules often meet proportionality criteria, allowing smaller banks and other �nancial institutions

with a low-risk macro-prudential pro�le to wave the requirements that may pose unjusti�ed

burdens for them. For instance, in the US, the 2010 Dodd-Frank Act set a $50 billion threshold

in assets above which any bank automatically quali�es for Federal Reserve supervision and

special regulation which demands tougher capital conditions, higher liquidity, and speci�c re-

quirements such as participating in the annual stress tests. Currently, there is an intense debate

on the suitability of this limit and several initiatives to raise this bar to $500 billion. The evi-

dence in this paper formally supports the eligibility of small and even medium-sized �rms for

regulatory exemptions under the principle of proportionality, since, in contrast to large banks,

only large shocks seem to imply a risk of contagion. The speci�c analysis on the banks with

median assets in the range $50-500 billion in our sample gives little support to generally claim

that these banks do not present systemic concerns.

The remaining of the paper is organized as follows. Section 2 discusses the technical aspects

related to the piecewise extension of the CoVaR model in Adrian and Brunermeir (2016).

Section 3 presents the data used in the paper. Section 4 discusses the empirical analysis.

Finally, Section 5 summarizes and concludes.

2 Characterizing marginal response pro�les: A CoVaR-

based approach

For a certain shortfall probability � , consider the quantile-regression (QR) model proposed by

Adrian and Brunnermeier (2016) (AB henceforth) to address the systemic contribution of the

i-th individual bank to the total system:

Xt;Si = �i (�) + Z
0
t�1
i (�) + �i (�)Xt;i + u

i
t� ; t = 2; :::; T (1)

where we use Xt;Si to denote the return of the system, Zt is a p-vector vector of state variables,

Xt;i is the return of an individual bank, uit� is a noise term obeying general standard assumptions

in the QR setting, and (�i (�) ; 
0i (�) ; �i (�))
0 is a vector of unknown, bank-speci�c parameters.

In a regulatory benchmark concerned with systemic contagion, it is convenient to de�ne returns

as the (relative) change of the market value of the assets portfolio held by the total system

or the individual banks, so we shall understand that returs are computed in this way in the

sequel. In the AB setting, the main purpose of (1) is to determine a time-varying measure
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of systemic risk, termed �CoVaR, which captures the contribution of the individual bank to

the total risk of the system in a stressed scenario. In particular, this measure is computed

as �CoVaR(�) = b�i (�) � h]V aRt;i (�)�]V aRt;i (0:50)i ; where b�i (�) is the quantile-regression
estimate of �i (�) in (1) ; and ]V aRt;i (�) denotes exogenous estimates of the VaR process at a
given probability level.

Our interest in this econometric framework is not motivated by the �nal �CoVaR measure

itself, but in the fact that (1) relates the conditional distribution of the returns of the system to

the returns of an individual bank in a simple and fairly tractable way. In this representation,

�i (�) captures the marginal sensitivity or response of the system to a shock in the market

value of the assets of an individual bank after controlling for the market-wide e¤ects in Zt, such

that systemic contagion occurs if �i (�) 6= 0. As discussed by López-Espinosa et al. (2015),

equation (1) can result excessively restrictive for practical purposes because �i (�) is assumed to

be constant independently of the magnitude of the triggering shock. Consistent with previous

literature in volatility and downside-risk modelling (e.g., Engle and Manganelli 2004), López-

Espinosa et al. (2015) report empirical evidence that losses associated to negative returns

trigger larger responses in the system than positive returns do. More generally, Xt;Si may

exhibit nonlinear marginal responses as a function of a number of latent factors. A simple and

appealing way to model such dependences is to allow �i (�) to vary on the values exhibited by

the bank-speci�c return Xt;i. We discuss a generalization of the AB setting in this spirit in the

remaining of this section.

First, in order to enable sound comparisons across di¤erent banks and for di¤erent categories

of shocks, it is convenient to de�ne the standardized returns X�
t;i := (Xt;i � �i) =�i; with �i and

�i denoting the mean and standard deviation ofXt;i; respectively.2 Note that, for high-frequency

returns, �i is typically close to zero, but �i is sizeable, so this operation essentially leads to a

re-scaling of the original series. Let Si be the support of X�
t;i; and for a �xed k � 1; consider

a sequence of negative thresholds
�
��i;j
	k
j=1

partitioning the negative space of Si into k + 1
disjoint segments

�
C�i;j
	k+1
j=1
, thereby de�ning the variables X�

t;ij =
�
X�
t;i : �

�
j�1;i < X

�
t;i � ��j;i

	
with ��i;0 := minSi and ��i;k+1 := 0; i.e., the set of negative observations in each of these

partitions. Analogously, consider a set of positive thresholds
�
�+i;j
	k
j=1

partitioning the positive

region of Si into k+1 disjoint segments,
�
C�i;j
	k+1
j=1
, and de�neX+

t;ij =
�
X�
t;i : �

+
j�1;i < X

�
t;i � �+j;i

	
with �+i;0 := 0 and �

+
i;k+1 := maxSi. Then, we can extend (1) to accommodate possible nonlinear

responses against shocks in a particular bank using the piecewise-threshold-linear quantile-

2The standardization seeks to remove e¤ects associated to the volatility of the distribution of returns, which

perhaps provides a more rigorous analysis than that based on raw returns. Nevertheless, it should be noted

that the analysis on the series did not lead to di¤erent qualitative conclusions.
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regression model:

Xt;Si = �i (�) + Z
0
t�1
i (�) +

k+1X
j=1

��ij (�)X
�
t;ij +

k+1X
j=1

�+ij (�)X
+
t;ij + u

i
t� (2)

We then de�ne the Marginal Response Pro�le (MRP) of the system at the � -th quantile against

(standardized) shocks to the market-valued total assets held by i-th bank as the sequence of

sensibility coe¢ cients associated to the returns in each one of these categories, namely:

MRPi (�) :=
�
��i1 (�) ; :::; �

�
ik+1 (�) ; �

+
i1 (�) ; :::; �

+
ik+1 (�)

�0
(3)

Some comments follow. Model (2) is a straightforward generalization of (1) in which the

system is allowed to exhibit di¤erent responses to individual shocks attending to both its sign

and its magnitude, after controlling for the in�uence of market-wide conditions captured by

suitable state variables in Zt. Model (1) in AB is nested as a particular case under the restriction

��ij (�) = �
+
ij (�) = �i (�) for all j = 1; ::; k + 1, which implies MRPi (�) = �i (�) : Similarly, the

asymmetric CoVaR model in López-Espinosa et al. (2015) arises as a particular case under the

restrictions ��ij (�) = �
�
i (�) and �

+
ij (�) = �

+
i (�) ; such that only the sign, but not the magnitude

of the shock, determines the sensibility of the system. In this case, MRPi (�) is a piecewise

constant function exhibiting a single discontinuity at the origin. Because both models arise

from imposing linear restrictions in (2), their empirical suitability can be formally tested by

means of standard Wald-type tests.

The number of thresholds that characterize this model, k; could be allowed to grow such

that in the limit MRPi (�) would be a continuous function. We note that such approach is

feasible and could be estimated using non-parametric quantile regression methods, but we do

not pursue that direction in this paper. Instead, we consider a �xed, �nite k, such that the

resulting MRPi (�) can be seen as a discrete piecewise-threshold-linear approximation of the

underlying function. This approach corresponds with so-called threshold models, widely known

in the literature of time-series in econometrics. The advantage of this modelling approach is

that it allows to conduct inference on the coe¢ cients and test meaningful restrictions in a fairly

tractable way, as discussed previously.

The parameter vector �i (�) := (�i (�) ; 

0
i (�) ;MRP

0
i (�))

0 can be estimated given the se-

quence of threshold values by means of the standard linear quantile regression methodology.

In particular, the quantile-regression estimator of � (�) given 
ti :=
�
1; Z 0t�1;i; X

�
t;i1; :::; X

+
t;ik

�0
;

denoted b�i (�) ; is de�ned as:
arg min

b2Rn

TX
t=2

�� (Xt;S � 
0tib) (4)

where �� (z) = z(��I(z < 0)); with I(�) denoting the indicator function, and n = 2�(k + 1)+p+
1 denoting the total number of parameters to be estimated. The optimization of this objective
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function involves numerical methods and, in contrast to least-squares estimation, there does

not exist a closed-form solution for b�i (�) :
Under general conditions that do not require specifying the unknown distribution of returns,b�i (�) is consistent and T �b�i (�)� �i (�)� d! N (0; Vi (�)) as the sample size T diverges, with

Vi (�) denoting a �nite covariance matrix that can be estimated consistently in a number of

ways; see Koenker (2005). We shall implement Powell�s (1991) estimator, which combines

kernel-density estimation with a heteroskedasticity-consistent covariance matrix estimation.

This is the most popular way of estimating the covariance matrix in applied papers dealing

with �nancial returns; see, among others, Engle and Manganelli (2004), Gaglianone et al.

(2011) and Rubia and Sanchis-Marco (2013). In particular, de�ne the outer-product matrix

AT� = � (1� �)
PT

t=2
ti

0
ti=T; and let be BT� = (ThT )

�1PT
t=2K (buit�=hT ) 
ti
0ti, where K (�)

is a kernel function, hT is a suitable bandwidth parameter, and bui�t denotes the estimated
residuals from the quantile regression. Then, a heteroskedasticity-consistent estimate of Vi (�)

is given by [BT� ]
�1AT� [BT� ]

�1 ; which, for instance, can be used to conduct inference and

construct con�dence intervals for MRPi (�) :

3 Data

We collect market and balance sheet data for both Bank Holding Companies (BHC) and Com-

mercial Banks (CB) which are publicly traded in the U.S. stock market over the period January

1990 through December 2014, totalling 1,210 institutions. Equity market prices are obtained

from Datastream on a weekly basis. Accounting data, referred to total assets, book-valued

equity, long-term liabilities, as well as other well-known SIFI-related proxy variables, such as

short-term wholesale funding and o¤-balance sheet items, are obtained from the Federal Reserve

Bank of Chicago Bank Regulatory Database on a quarterly basis.

As in AB, we compute weekly market-valued total assets de�ned as Ait = MEit � Lit for
each bank in the sample, whereMEit is the market value of equity, and Lit is the leverage ratio,

de�ned as the total assets to book equity ratio. We then determine bank-individual returns Xit

as the simple growth rate of Ait; namely, Xit = (Ait � Ait�1) =Ait�1; noting that these series
capture (relative) changes in the asset portfolio of each individual bank. To circumvent the

sampling frequency mismatch between market data available on a weekly basis and balance

sheet disclosed on a quarterly basis, we smooth weekly the quarterly leverage ratio Lit using

cubic spline interpolation. Results are insensitive to this consideration and, for instance, linear

interpolation leads to similar qualitative evidence.

In order to implement the quantile regression methodology, we follow López-Espinosa et al.

(2015) and require banks to be traded over at least 500 weeks on the stock market. This choice

seeks to obtain a good compromise between the number of time-series observations that ensure
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valid inference in the quantile-regression analysis and the total number of �rms included in the

�ltered sample that ensures a meaningful cross-sectional analysis. The �nal sample is composed

of 422 banks (301 BHC and 121 CB) with an average time-series length of 855 observations

(maximum length over the period is 1303 observations). Table 1 reports usual descriptive

statistics on the banks included in the �nal sample attending to bank-speci�c characteristics

such as total assets, short-term wholesale funding, liabilities or total deposits, given the total

sample, and the subsamples of BHC and CB. These statistics reveals the sheer heterogeneity

between large and small companies.

[Insert Table 1 around here]

For the estimation of (2), and following López-Espinosa et al. (2012, 2015), the returns

of the overall system, Xt;Si ; are constructed as a value-weighted average of the individual re-

turns Xit after excluding the return of the i-th bank under analysis; see also Adrian and

Brunnermeier (2016). More formally, Xt;Si =
PN

j=1 !
i
t;jXt;j; with !it;j = 0 if j = i and

!it;j = At�1;j=
PN

s=1;s 6=iAt�1;s otherwise, with N denoting the number of individual banks ana-

lyzed. In this approach, the proxy of the �system�varies on a bank-to-bank basis as it represents

the set of banks that surrounds a particular bank. In our view, this is more convenient that

merely value-weighting all available individual returns for two main reasons. First, this char-

acterization matches more naturally the idea of �system�when addressing systemic contagion,

since it considers a potentially contaminating agent on the one side (the individual banks), and

the rest of the population on the other. Secondly, and more importantly from a methodological

perspective, the estimation of the sensibilities that characterize the MRP of the system are

more rigorously determined. Excluding explicitly the bank under analysis necessarily rules out

the possibility of spurious tail-interrelations that otherwise may be caused by the inclusion of

the same individual in both sides of equation (2). This consideration is particularly relevant

when N is small, or when the relative weight of a bank in the system is particular sizeable, as

it is the characteristic case of large-capitalization banks.

Finally, following Adrian and Brunnermeir (2016), the state variables used to control for

market-wide environmental conditions in the Zt vector in (2) are the Volatility Index of the

Chicago Board Options Exchange (VIX); the change in the U.S. Treasury bill secondary market

3-month rate (�T-bill); the yield spread between the U.S. Treasury benchmark 10-year bonds

and the U.S. 3-month T-bill (Yield Slope); the change in the credit spread between the 10-year

Moody�s seasoned Baa corporate bond and the 10-year U.S. (Default Premium). Treasury

bond; and the return of the S&P 500 Composite Index (Market Return). These variables have

been obtained from the Federal Reserve Board�s H.15 databases. Although all these variables

are strongly tied to the economic cycle and can track the time-varying dynamics of expected

returns, we additionally control for shifts in the unconditional mean of the conditional quantile
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process through crisis-related dummy variables as in López-Espinosa et al. (2015). Thus, we

de�ne an Economic Recession dummy (NBER Recessions) variable taking the value equal to

one in the periods o¢ cially identi�ed as macroeconomic recessions by the NBER (July 1990-

March 1991, March 2001- November 2001 and December 2007-June 2009) and zero otherwise. In

addition, and since the 2007-09 recession was a major global �nancial crisis, we de�ne a speci�c

indicator (Financial Recession) taking the value equal to one in the period from August 2007

through March 2009. The choice of this speci�c period is sensibly motivated by the timing of

maximum disruption in money markets caused by �nancial uncertainty and counterparty credit

risk; see also López-Espinosa et al. (2015) for a discussion. Table 2 reports summary statistics

of these variables.

[Insert Table 2 around here]

4 Empirical analysis

Given the pairs (Xt;i; Xt;Si)
0, i = 1; :::; N; and the vector of state variables Zt, we estimate

the piecewise-linear-threshold model (2) at the shortfall probability � = 0:05 given k = 4

thresholds of negative and positive returns which are given by the quintiles of the empirical

distribution of the signed returns X�
t;i � I

�
X�
t;i < 0

�
and X�

t;i � I
�
X�
t;i � 0

�
; respectively: For

the discussion that follows, recall that the parameters
�
��j (�)

	
j�1 and

�
�+j (�)

	
j�1 are related

to increasing classes of standardized returns such that X�
t;1 (X

+
t;1) is formed by the smallest

negative (positive) returns in the bottom quintile of the distribution of the signed standardized

return series, whileX�
t;5 (X

+
t;5) includes the largest negative (positive) returns in the top quintile.

Hence, the sensitivity to most extreme observations in the tails of Xt;i are captured by �
�
1 (�)

and �+5 (�) ; while �
�
5 (�) and �

+
1 (�) capture the marginal response of the system against mild

departures from zero.

The choice of k and � seeks a fair balance between the number of observations included in

each partition, resulting from the total number of classes considered, and the precision in the

QR estimation. Ideally, a large number of classes would produce a continuous MRP function. In

a �nite sample, however, an increasing partitioning reduces the number of observations within

each class, which compromises the accuracy in linear QR estimation, particularly, at extreme

quantiles; see Chernozhukov (2005) and Koenker (2005). In this context, the estimation of

parameters related to dummy variables in the QR setting can be very imprecise at extreme

quantiles and, in any case, � = 0:05 is a usual choice in the downside-risk literature.3 Given

3The Basel framework requires the 1% (� = 0:01) to determine regulatory capital adequacy, but higher

quantiles are also applied for di¤erent purposes. Publicly traded �rms are required to disclose quantitative

market risk measures in their �nancial statements under SEC rules, being VaR one out of three possible

disclosing formats entitled. The SEC rule, e¤ective since June 1998, states a 5% VaR or lower risk level, but
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the QR estimation of model (2), the asymptotic covariance matrix is inferred using Powell�s

estimator, as described previously, using a Gaussian kernel and a bandwidth parameter hT
selected according to the rule hT = 0:9�min fb�u; IQRbug � T�1=5; where b�u and IQRbu denote
the sample standard deviation and the sample interquartile range of bui�t.
4.1 Main evidence

Owing to the large number of banks in our analysis, we present and discuss summarizing results

referring to the whole sample and to a conditional analysis that groups banks according to their

degree of systemic importance. While there is no formal de�nition of systemic importance, this

concept can be related to multiple �rm-speci�c dimensions. In order to ensure that results are

not driven by the speci�c choice of a proxy variable, we consider alternative indicators related

to systemic importance given publicly available data. In our analysis, these are determined by

the time-series medians of total assets (TA), short-term wholesale funding (STWSF), and o¤-

balance sheet items (OBSI). Results based on other related variables (e.g., long-term liabilities),

did not lead to di¤erent conclusions and are omitted, but available upon request. Tables 3, 4

and 5 report the medians of the parameter estimates of model (2) over the total sample and

given groups of banks given by the quartiles of TS, STWSF, and OBSI. In addition, these tables

report the frequencies of rejection of the t-statistics for individual signi�cance of the parameter

estimates at the usual 95% con�dence level over the total and conditional samples.

[Insert Table 3 around here]

Since the evidence that emerges from di¤erent SIFI-related variables is completely similar,

for ease of exposition we focus on the results for TA, reported in Table 3. The empirical

quartiles of this variable de�ne a Top category formed by banks with TA greater than $4.6

billion; the third quartile (Q3) is formed by banks with TA between $1.4 and $4.6 billion; the

second quartile (Q2) is formed by banks with TA between $0.7 $1.4 billion; �nally, the Bottom

category is formed by banks with TA smaller than $0.7 billion. From a systemic-risk perspective,

the �rst category poses the major interest as it includes the largest banks in the system. In the

�nal sample analyzed in this paper, this category includes 19 banks with median values of TA

greater than $50 billion and, consequently, eligible for tighter Federal Reserve supervision under

the 2010 Dodd-Frank Act. Among the largest banks in this category, six BHC have TA greater

than $500 billion, and eight BHC have been considered as global systemically important bank

(G-SIB) in a total list of 30 banks (as by November 2014) by the Financial Stability Board

using the assessment methodology developed by the Basel Committee on Banking Supervision.

We �rst discuss the estimates that characterize the average shape of the MRP of the system

given all the banks in the sample; see Table 3. The most noticeable feature is the abrupt

also permits higher rates provided economic justi�cation.
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discontinuity around the zero threshold. For negative returns in the classes
�
X�
t;1; :::; X

�
t;5

�0
, the

coe¢ cients that characterize the MRP show median values that range non-monotonically from

��1 (�) = 0:020 to �
�
5 (�) = 0:027: In contrast, for positive returns

�
X+
t;1; :::; X

+
t;5

�0
, the medians

of the estimated sensitivities are several orders of magnitude smaller (e.g., �+1 (�) = 0:002

and �+5 (�) = 0:003); which leads to a sharp discontinuity in the average response of the system

against mildly negative and slightly positive returns around zero. According to these estimates,

therefore, the characteristic MRP is a positive and strongly asymmetric function such that

negative shocks tend to trigger larger responses under stressed conditions.

In addition, the estimates suggest that the average MRP is fairly stable on average for either

negative or positive shocks, since the di¤erences between the coe¢ cients in those regions are

relatively small. Nevertheless, the analysis of individual signi�cance shows that the coe¢ cients

related to more extreme shocks tend to be more signi�cant in statistical terms, particularly, in

the negative region. For negative shocks, the average frequency of rejection of H0 : �
�
1 (�) = 0

at the 95% con�dence level is 74:41%. This ratio decays monotonically as the magnitude

of the shock decreases such that H0 : �
�
5 (�) = 0 shows an overall cross-sectional rejection

ratio of approximately 17%. Accordingly, extreme negative shocks would spill over the system

systematically and, although there is a greater deal of uncertainty in the response to small

losses, the system exhibits statistically signi�cant responses which are similar in size to those

of large losses for a sizable proportion of large banks in the sample. We shall turn back to

this issue later on when analyzing the frequencies of rejections of composite tests speci�cally

intended to check coe¢ cient homogeneity. Finally, and in sharp contrast to negative returns,

positive individual returns have a much more marginal e¤ect on the left-tail of the system in

a stressed scenario. With the exception of the largest positive shocks, there is little evidence

of tail co-movement. This is not surprising because positive shocks lack of the channels that

enable negative shocks to quickly spread out; see López-Espinosa et al. (2015) for a discussion.

[Insert Table 4 and 5 around here]

We now discuss the results from the conditional analysis when banks and their respec-

tive estimates are sorted attending to the size of TA. Clearly, systemic contagion does not

evolve independently of this individual characteristic. Both the magnitude of the estimated

coe¢ cients that determine the SMRP and the evidence of statistical signi�cance of these co-

e¢ cients are strongly a¤ected by bank�s size. Broadly speaking, the SMRP against shocks in

large banks, particularly those belonging to the Top category, is pushed upward in relation to

the unconditional SMRP. This is consistent with a higher vulnerability and leads to stronger

intensity in systemic contagion across all the categories of shocks analyzed. Similarly, the re-

jection ratios of the tests of individual signi�cance on the related coe¢ cients largely increase,

particularly, for banks in extreme quartiles. For example, for the Top size-sorted quartile, the
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(conditional) cross-sectional median estimate of ��1 (�) is 0:028, and the rejection frequency of

H0 : �
�
1 (�) = 0 increases to 91:43%. According to our estimates, the largest sensitivity coe¢ -

cients and the largest rejection frequencies of the individual t-statistics are consistently related

to the biggest banks in the sample. On the other hand, the group of smallest banks exhibit

a median SMRP formed by coe¢ cients closer to zero and hardly signi�cant in many cases.

For instance, the median of the estimated sensitivities ��1 (�) of the system against the most

extreme negative shocks to small banks in X�
t;1 is 0:012, which is statistically signi�cant only

in 49.53% of the banks analyzed. To put this into perspective, note that the overall system is

much more sensitive to smallest losses in the largest banks than to the most extreme losses in

the category of the smallest banks, noting that returns have been standardized to make such

comparison sound and meaningful. Accordingly, therefore, small and medium-sized banks are,

in general, not a concern from a systemic perspective.

[Insert Figures 1 to 2 around here]

In order to provide further insight on the pattern of systemic contagion, Figure 1 shows the

average shape of MRP against banks belonging to the Top and Bottom size-sorted quartiles

according to the estimates reported in Table 3. Medians of parameter coe¢ cient estimates are

displayed together with bootstrap-based 95% con�dence-intervals; see Chernick (2008). For

completeness, Figure 2 shows the SMRP and boostrapped con�dence intervals against banks

belonging to the Q3 and Q2 size-sorted categories. When comparing both �gures, it is clear

that there is a smooth transition from the characteristic pattern exhibited by the MRP in

top-sized banks and that related to bottom-sized banks. Consequently, we directly comment

on the main evidence in Figure 1, for which di¤erences caused by size are magni�ed.

All the empirical features discussed previously can be recognized immediately in Figure 1,

such as the strong asymmetric pattern around the zero return (which is particularly evident in

the top-size group), and the homogeneous patterns that sensibility coe¢ cients seem to exhibit

on average against either negative or positive shocks. For the biggest banks in the sample,

the medians of the coe¢ cients that characterize the average MRP against negative shocks are

signi�cant and positive at the 95% con�dence level. TheX�
t;5 class, composed by mild losses, has

attached a bootstrapped con�dence interval with the largest amplitude (i.e., higher parameter

uncertainty) in our sample. In contrast, the largest losses belonging the X�
t;1 class have attached

median estimates with very low dispersion, suggesting that extreme losses are consistently

associated with larger marginal responses in the system. This heterogeneous pattern is likely

due to the fact that extreme individual losses tend to systematically occur during periods of

market distress, whereas small losses can occur during either calmed or stressed periods for

which the system would exhibit di¤erent sensitivities. Similarly, the coe¢ cients that feature

the MRP against positive shocks are mostly signi�cant, except for small gains in the X+
t;1
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quintile, but all of them are close to zero.

In shap contrast, for the set of smallest banks, the MRP is only positive and statistically

signi�cant against large negative shocks in the X�
t;1; X

�
t;2 and X

�
t;3 classes, meaning that only

large negative shocks are able to trigger, on average, a signi�cant response under stressed

conditions. In any case, the coe¢ cients that feature these responses are considerably smaller

that those that characterize the MRP against big banks. Finally, whereas we have discussed

results focusing on size as proxied by TA, we stress that the evidence is fairly robust against

the choice of the indicator of systemic importance and similar results arise under alternative

variables. Figure 3 characterizes the average shape of the MRP given banks that belong to top

and bottom STWSF-sorted quartiles. The empirical patterns that emerge match closely those

discussed previously.

[Insert Figure 3 around here]

4.2 Testing composite hypotheses on the SMRP shape

We now turn our attention to formally determine whether there exists su¢ cient regularity on

the coe¢ cient estimates that characterize the shape of the SMRP as to, for instance, accept

constant responses for di¤erent categories of shocks. To this end, Table 6 reports the frequencies

of rejection at the 95% con�dence level of di¤erent composite hypotheses involving sets of

parameters, given the total sample, and given the quartiles of the sorting variables TA, STWSF

and OBSI. In particular, we address the null hypothesis that system is not a¤ected by individual

shocks after controlling for market-wide e¤ects, namely, H0;Ind : �
�
ij (�) = �+ij (�) = 0 for j =

1; :::; 5. This is a formal test for the existence of tail-comovements and systemic contagion

which assumes SMRPi (�) = 0, i.e., the tail of the system is only driven by market-wide

e¤ects. Additionally, we test for the suitability of the linear restrictions that gives rise to the

symmetric and asymmetric CoVaR model in AB and López-Espinosa et al. (2015), namely,

H0;Sym : �
�
ij (�) = �

+
ij (�) = �i (�) and H0;Asym : �

�
ij (�) = �

�
i (�) ; �

+
ij (�) = �

+
i (�) ; respectively.

As discussed previously, the symmetric CoVaR model implies a constant SMRP, while the

asymmetric CoVaR implies a piecewise constant SMRP with a single discontinuity at zero.

Finally, we test for the equality of coe¢ cients in the negative and positive regions, considering

the tests H0;EqLoss : �
�
ij (�) = ��i (�) and H0;EqGain : �

+
ij (�) = �+i (�) : Note that H0;EqLoss

(H0;EqGain) restricts the coe¢ cients related to negative (positive) returns of the SMRP to be

the same, but leaves unrestricted the coe¢ cients associated to positive (negative) returns.

[Insert Table 6 around here]

The hypothesis H0;Ind of no systemic interrelations is strongly rejected, both unconditionally
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and across all SIFI-related categories. While the rejection frequencies of H0;Ind increase with the

proxies of systemic importance and reach 100% for banks in the top quartiles of these variables,

these ratios are sizable even in the bottom classes of the SIFI-related variables and are greater

than 84% in all cases. This evidence underlines the fact that all banks, whether big or small,

are interconnected under adverse market circumstances. It is worth recalling at this point that

the return of the system is computed by explicitly excluding the bank-individual return, so this

massive evidence of interrelation is not spuriously caused by a mechanical correlation e¤ect and

needs to be attributed to balance-sheet interconnection e¤ects.

Similarly, the constant-coe¢ cient restriction H0;Sym in the linear CoVaR model is mostly

rejected. Rejection frequencies are not smaller than 66%, and increase to 90% for banks with

high-risk systemic pro�le, as proxied by any of the indicators considered. This result provides

massive statistical support to the hypothesis that the SMRP of the system exhibits some form

of non-linearity, particularly, in large-scale, complex banks. On the other hand, the rejection

frequencies of H0;Asym are sizable, but much more moderate than those of H0;Sym, suggesting

that adding further parametric structure to the linear model succeeds in capturing systemic

interdependence more accurately. In particular, the unconditional rejection frequency of H0;Asym
against the more general speci�cation analyzed here is 45:02%. There is little evidence of

patterns on why this test is accepted or rejected, since this proportion remains remarkably

stable when conditioning along the quartiles of the SIFI-related variables.

While imposing constant marginal responses for either negative or positive returns may not

be completely accurate, the results show that this model is not unreasonable from a parsimo-

nious perspective. In this context, the results from testing H0;EqLoss and H0;EqGain can provide

greater insight on characteristic shape of the SMRP. The null hypothesis H0;EqLoss shows the

lowest rejection ratios among the di¤erent composite hypotheses analyzed. For instance, for

banks in the top quartile of TA, the rejection ratio of H0;EqLoss is 20%, suggesting that the sys-

tem�s sensibility against losses is stable for most of the large banks. Similar evidence arises under

STWSF-sorting (20:95%) and OBSI-sorting (23:81%). The rejections frequencies of H0;EqLoss
are slightly greater for small banks (e.g., it is 34:58% for the bottom quartile of size), which is

consistent with greater heterogeneity in this class of banks. This result fully agrees with the

pattern reported in Figure 1; see also Table 3. In particular, the SMRB of the system for the

class of small banks tends to be exhibit on average positive and signi�cant coe¢ cients only

when negative shocks are large. In contrast, for moderate shocks in the upper quintiles, the

coe¢ cients that characterize the average SMRP are not signi�cant. Finally, the rejection ratios

of H0;EqGain are small, but tend to be much larger than that H0;EqLoss: As in the previous case,

this is nothing but the natural re�ection of the general picture that emerges from Table 3 and

Figure 1, since, in general terms, it is necessary to consider fairly large positive shocks to cause

a co-movement in the system in a stressed scenario.
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The overall picture that emerges from this analysis strongly rejects the hypothesis of a

constant MRP which would be consistent with the constant-response model in Adrian and

Brunnermeir (2010), particularly, for banks characterized by SIFI-related features. The model

with asymmetric MRP characterized in López-Espinosa et al. (2015) is more accurate from a

parsimonious perspective. Nevertheless, a more precise picture can generally be captured when

the parameters are allowed to be freely determined across di¤erent categories of shocks.

4.3 Proportionality in the U.S. �nancial sector

The 2010 Dodd-Frank Act set a $50 billion demarcation line in assets to identify systemically

important institutions in the U.S. �nancial system. Firms with assets above this threshold are

automatically designated for tighter Federal Reserve oversight and must comply with special

requisites such as participating in the annual stress tests. The choice of this particular threshold

quali�es the largest banks in the industry, but nevertheless has been deemed as arbitrary

and excessively conservative for the detractors of this legislation. In May 2015, the Banking

Committee of the U.S. Senate proposed a draft for setting new legislation on the sector in which

the critical threshold would be raised to $500 billion, giving the Federal Reserve the right to

apply enhanced supervisory requirements to banks with assets between $50 billion and $500

billion. Because of its potential impact on the stability of the �nancial system, this initiative

has found a strong opposition and it there is a �erce debate on whether the requirements of

the Dodd-Frank Act should be relaxed or not.

Using the econometric methodology implemented in our analysis, we can address the sen-

sitivity of the system to banks characterized by di¤erent sizes (as determined by the median

of total assets) around these threshold levels. To this end, we determine the median MRP of

the system against banks with a time-series median of TA falling in any of following categories:

med(TA) larger than $250 billion; med(TA) between $100 and $250 billion; med(TA) between

$50 and $100 billion, and med(TA) smaller than $50 billion. Table 7 below reports the main re-

sults from the estimation of the piecewise-linear-threshold model (2) at the shortfall probability

� = 0:05 with k = 4 as in the previous section.

[Insert Table 7 around here]

The picture that emerges from this analysis broadly agrees with that discussed in the previ-

ous section, showing that shocks originated in large banks consistently spill over the system in

a stressed scenario, whereas the system is signi�cantly more relient against shocks in small and

medium-sized banks. The empirical shape of the MRP exhibited by the system against shocks

to banks with assets in the region in dispute does not generally support the suitability of a

di¤erent treatment given to these banks under the argument that they do not pose a threat

to the system. Whereas it may true that for certain cases that the burden of carrying out
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stress tests annually and other of the tough requirements may exceed the bene�cits for stabil-

ity of the system, and that it could be harmless to slightly raise this limit to provide further

proportionality, or, alternatively, relax some of the requirements (e.g., conducting stress tests

bi-annually), the evidence in this paper does not support the convenience of dramatic changes

in the regulation and advises, at very least, for the convenience that the Federal Reserve retain

the right to implement enhanced supervision.

5 Concluding remarks

Under stressed conditions, idiosyncratic shocks originated in small and medium sized-banks

�which do not pose a serious concern for the integrety of the �nancial system in normal

conditions�can spill over and a¤ect other banks, which has motivated a considerable attention

from regulator and academic researchers. Nevertheless, since the econometric modelling of sys-

temic risk is a relatively new �eld, several questions remain unsolved. In this paper, we have

analyzed if the marginal response that features tail comovements between the banking system

and individual banks can be characterized by constant responses or exhibit size-dependent non-

linear patterns. To this end, we have implemented a piecewise-linear threshold model on US

banking data building on a generalization of the CoVaR setting of Adrian and Brunnermeier

(2016) to explicitly accomodate heterogenous responses. This analysis brings new empirical

evidence on the vulnerability of the �nancial system and the suitability of constant-response

models used in the literature.

For large banks, characterized by a large volume of total assets and liabilities and intense

activity in short-term wholesale markets, our analysis reveals that the average marginal re-

sponse function of the system is fairly sensitive even to small negative shocks, i.e., thereby

underlining the relevance systemic interconnnections between these �rms and the whole sys-

tem. For the vast majority of large-scale banks, the assumption that these systemic links are

constant independently of the size of the shock turns out to be restrictive and is largely rejected

in statistical terms. Consistent with López-Espinosa et al. (2015), our analysis reveals that a

major consideration in the CoVaR modelling is whether shocks to individual banks are positive

or negative. Whereas the tail of the loss function of the system exhibits a small sensitivity

to positive shocks, even small negative shocks feed in the system. Our analysis reveals that

the marginal response of the system, conditional to the sign of the shock, is remarkably stable

for most banks analyzed, which generally supports the empirical suitability of the so-called

asymmetric CoVaR model by López-Espinosa et al. (2015). Nevertheless, for a signi�cant

share of banks, introducing further heteregeneity in parameters leads to improvements. On the

other hand, for the group of small banks in the sample typically characterized by traditional

lending activities and small size, the analysis of the marginal response pro�le that features
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tail-comovements also reveals non-linearities, but only large negative shocks are able to a¤ect

the whole �nancial system.
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6 Figures and tables

Figure 1. Cross-sectional medians of the parameter estimates of the coe¢ cients
�
��i (�)

	5
j=1

and
�
�+i (�)

	5
j=1

(grey bars) that characterize the MRP of the system at � = 0:05 against

standardizes shocks to banks in size-sorted Top and Bottom quartiles reported in Table 3.

Blue dotted-dashed lines show bootstrapped-based 95% con�dence intervals for the median.

The �rst �ve classes in the horizontal axis correspond to the quintiles X�
t;1; :::; X

�
t;5 of negative

returns, whereas the remaining �ve clases correspond to the quintiles X+
t;1; :::; X

+
t;5 formed by

positive returns.
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Figure 2. Cross-sectional medians of the parameter estimates of the coe¢ cients
�
��i (�)

	5
j=1

and
�
�+i (�)

	5
j=1

(grey bars) that characterize the MRP of the system at � = 0:05 against shocks

to size-sorted banks in the Q3 and Q2 reported in Table 3. See caption in Figure 1 for details.
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Figure 3 Cross-sectional medians of parameter estimates of the coe¢ cients
�
��i (�)

	5
j=1

and�
�+i (�)

	5
j=1

(grey bars) that characterize the MRP of the system at � = 0:05 against shocks to

banks sorted by short-term wholesale funding belonging to the Top and Bottom quartiles re-

ported in Table 4. Blue dotted-dashed lines show 95% bootstrapped-based con�dence intervals

for the median. See caption in Figure 1 for details.
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