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Abstract
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1 Introduction

The stability of the financial sector is particularly vulnerable to large-scale financial institu-
tions because of the active role played by these firms in the wholesale payment and security
settlement system and the outstanding size of their liabilities. As dramatically exemplified by
the collapse of Lehman Brothers in 2007, large shocks transmitted by big banks can be propa-
gated rapidly across the financial system and reach the real sector at a global scale. This has
motivated a new international regulatory framework for the so-called Systemically-Important
Financial Institutions (SIFIs), requiring capital surcharges, additional liquidity buffers, and
tighter supervision. More generally, during periods of market turmoil and economic distress
in which financial assets are prone to move together (King and Wadhwani, 1990; Ang et al.
2006), even shocks originated in small- and medium-sized banks can initiate spirals of systemic
contagion. This raises the important issue of determining how vulnerable the financial system
is to shocks differing in intensity and possibly transmitted by banks exhibiting different repre-
sentative characteristics. In spite of the growing literature on systemic-risk modeling, the key
question of how big an individual loss needs to be in order to spill over the whole system, given
the nature of the transmitting bank, has received little attention.

The main aim of this paper is to provide greater understanding on systemic contagion by
documenting heterogeneous patterns in the intensity of tail-comovements as a function of the
size of the triggering shock, a bank-specific latent function that we shall refer to as Marginal
Response Profile (MRP) in the sequel. Because the MRP is highly idiosyncratic and varies
on a bank-to-banks basis, we characterize the average shape of this function attending to dif-
ferent SIFI-related characteristics, such as size, short-term wholesale funding, and volume of
off-balance sheet items. Systemic contagion is captured in our approach by a significant co-
movement between the left tail of the conditional distribution of the returns of the system and
a contemporaneous balance-sheet contraction in an individual bank. This phenomenon occurs
when reductions in the market value of the assets held by the individual bank are transmitted
into the overall system, for instance, through the fire-sales channel in a characteristic context
of strong asset commonality; see, among others, Brunnermeier and Pedersen (2009) and Green-
wood et al. (2015). The expected size of tail co-movements depends mainly on the marginal
sensibility of the system to a specific bank and the magnitude of the triggering shock.! Nat-
urally, the whole system exhibits different sensibilities to banks with different characteristics
which, furthermore, need not necessarily be independent of the intensity of the triggering shock.
As a result, systemic contagion could be feautured by a nonlinear MRP, such that the expected

impact of a shock could be endogenously amplified as a function of its relative size.

! Triggering shocks can be either exogenous (e.g., an idiosyncratic event such as the failure of a financial

institution), or endogenous (such as a macroeconomic imbalance); see ECB (2009) for further details.



In this paper, we characterize empirically the MRP that features the contribution of individ-
ual banks to the total risk of the system in the U.S. banking sector. Adrian and Brunnermeier
(2016) proposed an econometric framework for estimating time-varying measures of systemic
risk that can be conveniently adapted for this purpose. The so-called CoVaR approach builds
on quantile-regression estimates of a model that relates linearly the returns of the system to
the returns of an individual bank. This model assumes implicitly a constant MRP in which a
shock in the left tail of an individual bank generates the same characteristic response in the left
tail of the system, independently of its magnitude. This restrictive assumption can be relaxed
to allow individual shocks to non-linearly feed into the left tail of the system as a function of
their relative size. In our approach, we consider a piecewise-threshold-linear decomposition that
splits exogenously the empirical distribution of the standardized returns of individual banks
into different buckets or statistical classes characterized by the quintiles of signed returns. This
allows us to appraise heterogeneous patterns characterizing the MRP of the system and make
comparisons on a standardized basis. Furthermore, the empirical suitability of the model can
be tested against meaningful alternatives.

We estimate the shape of the system’s MRP building on the both bank holding companies
and commercial banks which are publicly traded in the U.S. stock market over the period
period January 1990 through December 2014. We characterize MRP empirically at the 5%
shortfall probability level using quantile regression and controlling for different market-wide
environmental conditions. The main evidence from this analysis reveals fairly heterogeneous
response patterns across the size of the triggering shocks, and across size- and other SIFI-related
characteristics of the bank transmitting the shock. Consistent with previous evidence, the
banking system is much more vulnerable to shocks in large banks, but our study complements
this well-known fact by uncovering a number of additional features. In particular, for the class
of large-scale banks in the top size-sorted quartile, the cross-sectional average MRP of the
system in an adverse scenario exhibits a strong sensitivity to losses which is surprisingly stable.
Accordingly, the banking system is fairly vulnerable to large banks and even relative small
balance-sheet contractions in these banks can feed into the system. Additionally, whereas the
cross-sectional variability of the sensitivity coefficient estimates is rather low for most extreme
losses, the marginal response against small losses is much more noisy and, hence, subject to
greater uncertainty. The overall evidence largely justifies the need for tighter supervision of
complex institutions. In contrast, for the class of small and medium-sized banks in the bottom
quartile, the overall system shows a considerable degree of resilience and only large relative
movements are able to feed into the left tail of the system. The coefficients that characterize
the MRP of the system against shocks to small banks are, in any case, considerably smaller.

This evidence is relevant from a regulatory perspective for at least two reasons. First, it

provides more precise insight on the systemic interrelations that link losses in individual banks



to losses in the overall financial system, revealing the empirical predominance of nonlinear re-
sponses. This has clear implications, for instance, for systemic-risk measurement, since extant
models, such as Adrian and Brunnermeir’s, assumes constant coefficients. Second, financial
regulators set rules that must apply on banks with fairly heterogeneous characteristics. Those
rules often meet proportionality criteria, allowing smaller banks and other financial institutions
with a low-risk macro-prudential profile to wave the requirements that may pose unjustified
burdens for them. For instance, in the US, the 2010 Dodd-Frank Act set a $50 billion threshold
in assets above which any bank automatically qualifies for Federal Reserve supervision and
special regulation which demands tougher capital conditions, higher liquidity, and specific re-
quirements such as participating in the annual stress tests. Currently, there is an intense debate
on the suitability of this limit and several initiatives to raise this bar to $500 billion. The evi-
dence in this paper formally supports the eligibility of small and even medium-sized firms for
regulatory exemptions under the principle of proportionality, since, in contrast to large banks,
only large shocks seem to imply a risk of contagion. The specific analysis on the banks with
median assets in the range $50-500 billion in our sample gives little support to generally claim
that these banks do not present systemic concerns.

The remaining of the paper is organized as follows. Section 2 discusses the technical aspects
related to the piecewise extension of the CoVaR model in Adrian and Brunermeir (2016).
Section 3 presents the data used in the paper. Section 4 discusses the empirical analysis.

Finally, Section 5 summarizes and concludes.

2 Characterizing marginal response profiles: A CoVaR-

based approach

For a certain shortfall probability 7, consider the quantile-regression (QR) model proposed by
Adrian and Brunnermeier (2016) (AB henceforth) to address the systemic contribution of the
1-th individual bank to the total system:

Xis
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=a; (1) + Z, 7y, (T) + 8 (7) Xps+uly, t=2,..,T (1)

where we use X; g, to denote the return of the system, Z; is a p-vector vector of state variables,
X, ; is the return of an individual bank, u}. is a noise term obeying general standard assumptions
in the QR setting, and («a; () ,,(7),d; (7))" is a vector of unknown, bank-specific parameters.
In a regulatory benchmark concerned with systemic contagion, it is convenient to define returns
as the (relative) change of the market value of the assets portfolio held by the total system
or the individual banks, so we shall understand that returs are computed in this way in the

sequel. In the AB setting, the main purpose of (1) is to determine a time-varying measure



of systemic risk, termed ACoVaR, which captures the contribution of the individual bank to
the total risk of the system in a stressed scenario. In particular, this measure is computed
as ACoVaR(7) = 0; (1) X [%m (1) — ‘%t,i (0.50)| , where 8, (7) is the quantile-regression
estimate of §; (7) in (1), and %t,i () denotes exogenous estimates of the VaR process at a
given probability level.

Our interest in this econometric framework is not motivated by the final ACoVaR measure
itself, but in the fact that (1) relates the conditional distribution of the returns of the system to
the returns of an individual bank in a simple and fairly tractable way. In this representation,
d; (T) captures the marginal sensitivity or response of the system to a shock in the market
value of the assets of an individual bank after controlling for the market-wide effects in Z;, such
that systemic contagion occurs if 9; (1) # 0. As discussed by Lépez-Espinosa et al. (2015),
equation (1) can result excessively restrictive for practical purposes because ¢; (7) is assumed to
be constant independently of the magnitude of the triggering shock. Consistent with previous
literature in volatility and downside-risk modelling (e.g., Engle and Manganelli 2004), Lépez-
Espinosa et al. (2015) report empirical evidence that losses associated to negative returns
trigger larger responses in the system than positive returns do. More generally, X, s, may
exhibit nonlinear marginal responses as a function of a number of latent factors. A simple and
appealing way to model such dependences is to allow d; (7) to vary on the values exhibited by
the bank-specific return X; ;. We discuss a generalization of the AB setting in this spirit in the
remaining of this section.

First, in order to enable sound comparisons across different banks and for different categories
of shocks, it is convenient to define the standardized returns X}, := (X;; — p;) /o, with p; and
o; denoting the mean and standard deviation of X ;, respectively.? Note that, for high-frequency
returns, p, is typically close to zero, but o; is sizeable, so this operation essentially leads to a
re-scaling of the original series. Let S; be the support of X}, and for a fixed & > 1, consider
a sequence of negative thresholds {Iil_ ; }j: | bartitioning the negative space of §; into k + 1
disjoint segments {Cz_j}jj» thereby defining the variables X, ;; = {Xt*Z PRy < X < "f]_z}
with K;5 = minS; and k;; ., = 0, i.e., the set of negative observations in each of these
partitions. Analogously, consider a set of positive thresholds {H:j }f: , bartitioning the positive

:{Xzi:Fﬁ < Xp, < ki

region of S; into k+1 disjoint segments, {Cz_j }j:, and define X" ey LSkl

tij
with £;, := 0 and k] ,; :== maxS;. Then, we can extend (1) to accommodate possible nonlinear

responses against shocks in a particular bank using the piecewise-threshold-linear quantile-

2The standardization seeks to remove effects associated to the volatility of the distribution of returns, which
perhaps provides a more rigorous analysis than that based on raw returns. Nevertheless, it should be noted

that the analysis on the series did not lead to different qualitative conclusions.



regression model:

k+1 k+1
Xt75i = (T) + Z£—171 + Z 51] Xt K% + Z 5 t K% + ut’l’ (2)

We then define the Marginal Response Profile (MRP) of the system at the 7-th quantile against
(standardized) shocks to the market-valued total assets held by i-th bank as the sequence of

sensibility coefficients associated to the returns in each one of these categories, namely:

MRP; (1) i= (673 (7) ooy 63141 (1), 851 (7) s 6y (7)) (3)

Some comments follow. Model (2) is a straightforward generalization of (1) in which the
system is allowed to exhibit different responses to individual shocks attending to both its sign
and its magnitude, after controlling for the influence of market-wide conditions captured by
suitable state variables in Z;. Model (1) in AB is nested as a particular case under the restriction
0, (1) = 65 (1) = 0; (1) for all j = 1,..,k + 1, which implies M RP, (1) = d; (7). Similarly, the
asymmetric CoVaR model in Lopez-Espinosa et al. (2015) arises as a particular case under the
restrictions 0;; (1) = 6; (7) and 87 (1) = ;" () , such that only the sign, but not the magnitude
of the shock, determines the sensibility of the system. In this case, M RP; (7) is a piecewise
constant function exhibiting a single discontinuity at the origin. Because both models arise
from imposing linear restrictions in (2), their empirical suitability can be formally tested by
means of standard Wald-type tests.

The number of thresholds that characterize this model, k, could be allowed to grow such
that in the limit M RP; (1) would be a continuous function. We note that such approach is
feasible and could be estimated using non-parametric quantile regression methods, but we do
not pursue that direction in this paper. Instead, we consider a fixed, finite k, such that the
resulting M RP; (1) can be seen as a discrete piecewise-threshold-linear approximation of the
underlying function. This approach corresponds with so-called threshold models, widely known
in the literature of time-series in econometrics. The advantage of this modelling approach is
that it allows to conduct inference on the coefficients and test meaningful restrictions in a fairly
tractable way, as discussed previously.

The parameter vector 0; (1) := (a; (7),7, (1), MRP} (7))" can be estimated given the se-
quence of threshold values by means of the standard linear quantile regression methodology.
In particular, the quantile-regression estimator of 6 (1) given €; = (1, VARTID, G Xttk)/,
denoted 0; (1), is defined as:

arg mmZpT (X5 — Q;b) (4)
=2

beR™

where p_(2) = z(7—1(z < 0)), with I(-) denoting the indicator function, and n = 2x (k + 1)+p+

1 denoting the total number of parameters to be estimated. The optimization of this objective
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function involves numerical methods and, in contrast to least-squares estimation, there does
not exist a closed-form solution for 8; (7).

Under general conditions that do not require specifying the unknown distribution of returns,
0; (7) is consistent and T (51 (1) —6; (7')) <, N (0,V; (7)) as the sample size T diverges, with
Vi (1) denoting a finite covariance matrix that can be estimated consistently in a number of
ways; see Koenker (2005). We shall implement Powell’s (1991) estimator, which combines
kernel-density estimation with a heteroskedasticity-consistent covariance matrix estimation.
This is the most popular way of estimating the covariance matrix in applied papers dealing
with financial returns; see, among others, Engle and Manganelli (2004), Gaglianone et al.
(2011) and Rubia and Sanchis-Marco (2013). In particular, define the outer-product matrix
Apr =7 (1= 7)1, 9, /T, and let be Br, = (Thy) " 3.1, K (@i, /hr) QuQ;, where K ()
is a kernel function, hr is a suitable bandwidth parameter, and @, denotes the estimated
residuals from the quantile regression. Then, a heteroskedasticity-consistent estimate of V; (1)
is given by [BTT]_1 Arp, [BTT]_l, which, for instance, can be used to conduct inference and

construct confidence intervals for M RP; (7).

3 Data

We collect market and balance sheet data for both Bank Holding Companies (BHC) and Com-
mercial Banks (CB) which are publicly traded in the U.S. stock market over the period January
1990 through December 2014, totalling 1,210 institutions. Equity market prices are obtained
from Datastream on a weekly basis. Accounting data, referred to total assets, book-valued
equity, long-term liabilities, as well as other well-known SIFI-related proxy variables, such as
short-term wholesale funding and off-balance sheet items, are obtained from the Federal Reserve
Bank of Chicago Bank Regulatory Database on a quarterly basis.

As in AB, we compute weekly market-valued total assets defined as A;; = M FE;; x L for
each bank in the sample, where M E}; is the market value of equity, and L;; is the leverage ratio,
defined as the total assets to book equity ratio. We then determine bank-individual returns X,
as the simple growth rate of A;, namely, X;; = (Ay — Ay_1) /Ai—1, noting that these series
capture (relative) changes in the asset portfolio of each individual bank. To circumvent the
sampling frequency mismatch between market data available on a weekly basis and balance
sheet disclosed on a quarterly basis, we smooth weekly the quarterly leverage ratio L; using
cubic spline interpolation. Results are insensitive to this consideration and, for instance, linear
interpolation leads to similar qualitative evidence.

In order to implement the quantile regression methodology, we follow Lépez-Espinosa et al.
(2015) and require banks to be traded over at least 500 weeks on the stock market. This choice

seeks to obtain a good compromise between the number of time-series observations that ensure



valid inference in the quantile-regression analysis and the total number of firms included in the
filtered sample that ensures a meaningful cross-sectional analysis. The final sample is composed
of 422 banks (301 BHC and 121 CB) with an average time-series length of 855 observations
(maximum length over the period is 1303 observations). Table 1 reports usual descriptive
statistics on the banks included in the final sample attending to bank-specific characteristics
such as total assets, short-term wholesale funding, liabilities or total deposits, given the total
sample, and the subsamples of BHC and CB. These statistics reveals the sheer heterogeneity

between large and small companies.
[Insert Table 1 around here]

For the estimation of (2), and following Lépez-Espinosa et al. (2012, 2015), the returns
of the overall system, X, g,, are constructed as a value-weighted average of the individual re-
turns X;; after excluding the return of the i-th bank under analysis; see also Adrian and
Brunnermeier (2016). More formally, X;g = Z;\Ll wi ;X g, with wi; = 0if j = i and
w;j = A1,/ fo:l,s i A;_1 s otherwise, with NV denoting the number of individual banks ana-
lyzed. In this approach, the proxy of the ‘system’ varies on a bank-to-bank basis as it represents
the set of banks that surrounds a particular bank. In our view, this is more convenient that
merely value-weighting all available individual returns for two main reasons. First, this char-
acterization matches more naturally the idea of ‘system’ when addressing systemic contagion,
since it considers a potentially contaminating agent on the one side (the individual banks), and
the rest of the population on the other. Secondly, and more importantly from a methodological
perspective, the estimation of the sensibilities that characterize the MRP of the system are
more rigorously determined. Excluding explicitly the bank under analysis necessarily rules out
the possibility of spurious tail-interrelations that otherwise may be caused by the inclusion of
the same individual in both sides of equation (2). This consideration is particularly relevant
when N is small, or when the relative weight of a bank in the system is particular sizeable, as
it is the characteristic case of large-capitalization banks.

Finally, following Adrian and Brunnermeir (2016), the state variables used to control for
market-wide environmental conditions in the Z; vector in (2) are the Volatility Index of the
Chicago Board Options Exchange (VIX); the change in the U.S. Treasury bill secondary market
3-month rate (AT-bill); the yield spread between the U.S. Treasury benchmark 10-year bonds
and the U.S. 3-month T-bill (Yield Slope); the change in the credit spread between the 10-year
Moody’s seasoned Baa corporate bond and the 10-year U.S. (Default Premium). Treasury
bond; and the return of the S&P 500 Composite Index (Market Return). These variables have
been obtained from the Federal Reserve Board’s H.15 databases. Although all these variables
are strongly tied to the economic cycle and can track the time-varying dynamics of expected

returns, we additionally control for shifts in the unconditional mean of the conditional quantile



process through crisis-related dummy variables as in Lépez-Espinosa et al. (2015). Thus, we
define an Economic Recession dummy (NBER Recessions) variable taking the value equal to
one in the periods officially identified as macroeconomic recessions by the NBER (July 1990-
March 1991, March 2001- November 2001 and December 2007-June 2009) and zero otherwise. In
addition, and since the 2007-09 recession was a major global financial crisis, we define a specific
indicator (Financial Recession) taking the value equal to one in the period from August 2007
through March 2009. The choice of this specific period is sensibly motivated by the timing of
maximum disruption in money markets caused by financial uncertainty and counterparty credit
risk; see also Lopez-Espinosa et al. (2015) for a discussion. Table 2 reports summary statistics
of these variables.

[Insert Table 2 around here]

4 Empirical analysis

Given the pairs (Xt,iaXLSi)la i = 1,...,N, and the vector of state variables Z;, we estimate
the piecewise-linear-threshold model (2) at the shortfall probability 7 = 0.05 given k = 4
thresholds of negative and positive returns which are given by the quintiles of the empirical
distribution of the signed returns X, x I (Xt*Z < 0) and X7, x I (Xt* ;> 0) , respectively. For
the discussion that follows, recall that the parameters {6} (1) }jz , and {67 (T)}jZ , are related
to increasing classes of standardized returns such that X, (X;fl) is formed by the smallest
negative (positive) returns in the bottom quintile of the distribution of the signed standardized
return series, while X, (X;;) includes the largest negative (positive) returns in the top quintile.
Hence, the sensitivity to most extreme observations in the tails of X;; are captured by ¢; (7)
and 0, (), while 05 (7) and 6] (7) capture the marginal response of the system against mild
departures from zero.

The choice of k and 7 seeks a fair balance between the number of observations included in
each partition, resulting from the total number of classes considered, and the precision in the
QR estimation. Ideally, a large number of classes would produce a continuous MRP function. In
a finite sample, however, an increasing partitioning reduces the number of observations within
each class, which compromises the accuracy in linear QR estimation, particularly, at extreme
quantiles; see Chernozhukov (2005) and Koenker (2005). In this context, the estimation of
parameters related to dummy variables in the QR setting can be very imprecise at extreme

quantiles and, in any case, 7 = 0.05 is a usual choice in the downside-risk literature.® Given

3The Basel framework requires the 1% (7 = 0.01) to determine regulatory capital adequacy, but higher
quantiles are also applied for different purposes. Publicly traded firms are required to disclose quantitative
market risk measures in their financial statements under SEC rules, being VaR one out of three possible

disclosing formats entitled. The SEC rule, effective since June 1998, states a 5% VaR or lower risk level, but



the QR estimation of model (2), the asymptotic covariance matrix is inferred using Powell’s
estimator, as described previously, using a Gaussian kernel and a bandwidth parameter hp
selected according to the rule Ay = 0.9 x min {7, IQRz} x T~/°, where 7, and IQR; denote

the sample standard deviation and the sample interquartile range of @Z,.

4.1 Main evidence

Owing to the large number of banks in our analysis, we present and discuss summarizing results
referring to the whole sample and to a conditional analysis that groups banks according to their
degree of systemic importance. While there is no formal definition of systemic importance, this
concept can be related to multiple firm-specific dimensions. In order to ensure that results are
not driven by the specific choice of a proxy variable, we consider alternative indicators related
to systemic importance given publicly available data. In our analysis, these are determined by
the time-series medians of total assets (TA), short-term wholesale funding (STWSF), and off-
balance sheet items (OBSI). Results based on other related variables (e.g., long-term liabilities),
did not lead to different conclusions and are omitted, but available upon request. Tables 3, 4
and 5 report the medians of the parameter estimates of model (2) over the total sample and
given groups of banks given by the quartiles of TS, STWSF, and OBSI. In addition, these tables
report the frequencies of rejection of the ¢-statistics for individual significance of the parameter

estimates at the usual 95% confidence level over the total and conditional samples.
[Insert Table 3 around here]

Since the evidence that emerges from different SIFI-related variables is completely similar,
for ease of exposition we focus on the results for TA, reported in Table 3. The empirical
quartiles of this variable define a Top category formed by banks with TA greater than $4.6
billion; the third quartile (Q3) is formed by banks with TA between $1.4 and $4.6 billion; the
second quartile (Q2) is formed by banks with TA between $0.7 $1.4 billion; finally, the Bottom
category is formed by banks with TA smaller than $0.7 billion. From a systemic-risk perspective,
the first category poses the major interest as it includes the largest banks in the system. In the
final sample analyzed in this paper, this category includes 19 banks with median values of TA
greater than $50 billion and, consequently, eligible for tighter Federal Reserve supervision under
the 2010 Dodd-Frank Act. Among the largest banks in this category, six BHC have TA greater
than $500 billion, and eight BHC have been considered as global systemically important bank
(G-SIB) in a total list of 30 banks (as by November 2014) by the Financial Stability Board
using the assessment methodology developed by the Basel Committee on Banking Supervision.

We first discuss the estimates that characterize the average shape of the MRP of the system

given all the banks in the sample; see Table 3. The most noticeable feature is the abrupt

also permits higher rates provided economic justification.
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discontinuity around the zero threshold. For negative returns in the classes (Xt_ 1y oo Xpp 5)/, the
coefficients that characterize the MRP show median values that range non-monotonically from
07 (1) = 0.020 to &5 () = 0.027. In contrast, for positive returns (X, ..., X;%)’, the medians
of the estimated sensitivities are several orders of magnitude smaller (e.g., 47 (7) = 0.002
and 67 (1) = 0.003), which leads to a sharp discontinuity in the average response of the system
against mildly negative and slightly positive returns around zero. According to these estimates,
therefore, the characteristic MRP is a positive and strongly asymmetric function such that
negative shocks tend to trigger larger responses under stressed conditions.

In addition, the estimates suggest that the average MRP is fairly stable on average for either
negative or positive shocks, since the differences between the coefficients in those regions are
relatively small. Nevertheless, the analysis of individual significance shows that the coefficients
related to more extreme shocks tend to be more significant in statistical terms, particularly, in
the negative region. For negative shocks, the average frequency of rejection of Hy : 67 (7) =0
at the 95% confidence level is 74.41%. This ratio decays monotonically as the magnitude
of the shock decreases such that Hy : 05 (7) = 0 shows an overall cross-sectional rejection
ratio of approximately 17%. Accordingly, extreme negative shocks would spill over the system
systematically and, although there is a greater deal of uncertainty in the response to small
losses, the system exhibits statistically significant responses which are similar in size to those
of large losses for a sizable proportion of large banks in the sample. We shall turn back to
this issue later on when analyzing the frequencies of rejections of composite tests specifically
intended to check coefficient homogeneity. Finally, and in sharp contrast to negative returns,
positive individual returns have a much more marginal effect on the left-tail of the system in
a stressed scenario. With the exception of the largest positive shocks, there is little evidence
of tail co-movement. This is not surprising because positive shocks lack of the channels that

enable negative shocks to quickly spread out; see Lépez-Espinosa et al. (2015) for a discussion.
[Insert Table 4 and 5 around here]

We now discuss the results from the conditional analysis when banks and their respec-
tive estimates are sorted attending to the size of TA. Clearly, systemic contagion does not
evolve independently of this individual characteristic. Both the magnitude of the estimated
coefficients that determine the SMRP and the evidence of statistical significance of these co-
efficients are strongly affected by bank’s size. Broadly speaking, the SMRP against shocks in
large banks, particularly those belonging to the Top category, is pushed upward in relation to
the unconditional SMRP. This is consistent with a higher vulnerability and leads to stronger
intensity in systemic contagion across all the categories of shocks analyzed. Similarly, the re-
jection ratios of the tests of individual significance on the related coefficients largely increase,

particularly, for banks in extreme quartiles. For example, for the Top size-sorted quartile, the
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(conditional) cross-sectional median estimate of 67 (7) is 0.028, and the rejection frequency of
Hp : 07 (1) = 0 increases to 91.43%. According to our estimates, the largest sensitivity coeffi-
cients and the largest rejection frequencies of the individual ¢-statistics are consistently related
to the biggest banks in the sample. On the other hand, the group of smallest banks exhibit
a median SMRP formed by coefficients closer to zero and hardly significant in many cases.
For instance, the median of the estimated sensitivities d; (7) of the system against the most
extreme negative shocks to small banks in X, is 0.012, which is statistically significant only
in 49.53% of the banks analyzed. To put this into perspective, note that the overall system is
much more sensitive to smallest losses in the largest banks than to the most extreme losses in
the category of the smallest banks, noting that returns have been standardized to make such
comparison sound and meaningful. Accordingly, therefore, small and medium-sized banks are,

in general, not a concern from a systemic perspective.
[Insert Figures 1 to 2 around here]

In order to provide further insight on the pattern of systemic contagion, Figure 1 shows the
average shape of MRP against banks belonging to the Top and Bottom size-sorted quartiles
according to the estimates reported in Table 3. Medians of parameter coefficient estimates are
displayed together with bootstrap-based 95% confidence-intervals; see Chernick (2008). For
completeness, Figure 2 shows the SMRP and boostrapped confidence intervals against banks
belonging to the Q3 and Q2 size-sorted categories. When comparing both figures, it is clear
that there is a smooth transition from the characteristic pattern exhibited by the MRP in
top-sized banks and that related to bottom-sized banks. Consequently, we directly comment
on the main evidence in Figure 1, for which differences caused by size are magnified.

All the empirical features discussed previously can be recognized immediately in Figure 1,
such as the strong asymmetric pattern around the zero return (which is particularly evident in
the top-size group), and the homogeneous patterns that sensibility coefficients seem to exhibit
on average against either negative or positive shocks. For the biggest banks in the sample,
the medians of the coefficients that characterize the average MRP against negative shocks are
significant and positive at the 95% confidence level. The X, 5 class, composed by mild losses, has
attached a bootstrapped confidence interval with the largest amplitude (i.e., higher parameter
uncertainty) in our sample. In contrast, the largest losses belonging the X, class have attached
median estimates with very low dispersion, suggesting that extreme losses are consistently
associated with larger marginal responses in the system. This heterogeneous pattern is likely
due to the fact that extreme individual losses tend to systematically occur during periods of
market distress, whereas small losses can occur during either calmed or stressed periods for
which the system would exhibit different sensitivities. Similarly, the coefficients that feature

the MRP against positive shocks are mostly significant, except for small gains in the X;Ll
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quintile, but all of them are close to zero.

In shap contrast, for the set of smallest banks, the MRP is only positive and statistically
significant against large negative shocks in the X;;, X, and X, ; classes, meaning that only
large negative shocks are able to trigger, on average, a significant response under stressed
conditions. In any case, the coefficients that feature these responses are considerably smaller
that those that characterize the MRP against big banks. Finally, whereas we have discussed
results focusing on size as proxied by TA, we stress that the evidence is fairly robust against
the choice of the indicator of systemic importance and similar results arise under alternative
variables. Figure 3 characterizes the average shape of the MRP given banks that belong to top
and bottom STWSF-sorted quartiles. The empirical patterns that emerge match closely those

discussed previously.

[Insert Figure 3 around here]

4.2 Testing composite hypotheses on the SMRP shape

We now turn our attention to formally determine whether there exists sufficient regularity on
the coefficient estimates that characterize the shape of the SMRP as to, for instance, accept
constant responses for different categories of shocks. To this end, Table 6 reports the frequencies
of rejection at the 95% confidence level of different composite hypotheses involving sets of
parameters, given the total sample, and given the quartiles of the sorting variables TA, STWSF
and OBSI. In particular, we address the null hypothesis that system is not affected by individual
shocks after controlling for market-wide effects, namely, Ho rnq : 05 (1) = 6;; (1) = 0 for j =
1,...,5. This is a formal test for the existence of tail-comovements and systemic contagion
which assumes SMRP; (1) = 0, i.e., the tail of the system is only driven by market-wide
effects. Additionally, we test for the suitability of the linear restrictions that gives rise to the
symmetric and asymmetric CoVaR model in AB and Loépez-Espinosa et al. (2015), namely,
Ho sym : 0;; (1) = 65 (1) = 6; (1) and Ho asym : 6;; (1) = 6; (1), 0, (1) = 8] (1), respectively.
As discussed previously, the symmetric CoVaR model implies a constant SMRP, while the
asymmetric CoVaR implies a piecewise constant SMRP with a single discontinuity at zero.
Finally, we test for the equality of coefficients in the negative and positive regions, considering
the tests Ho pgross @ 0;; (1) = 0; (1) and Ho pecain (5;; (1) = &7 (7). Note that Hy gyress
(Ho, gqGain) restricts the coefficients related to negative (positive) returns of the SMRP to be

the same, but leaves unrestricted the coefficients associated to positive (negative) returns.

[Insert Table 6 around here]

The hypothesis Hy 1,4 of no systemic interrelations is strongly rejected, both unconditionally
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and across all SIFI-related categories. While the rejection frequencies of Hy 1,4 increase with the
proxies of systemic importance and reach 100% for banks in the top quartiles of these variables,
these ratios are sizable even in the bottom classes of the SIFI-related variables and are greater
than 84% in all cases. This evidence underlines the fact that all banks, whether big or small,
are interconnected under adverse market circumstances. It is worth recalling at this point that
the return of the system is computed by explicitly excluding the bank-individual return, so this
massive evidence of interrelation is not spuriously caused by a mechanical correlation effect and
needs to be attributed to balance-sheet interconnection effects.

Similarly, the constant-coefficient restriction Hy g, in the linear CoVaR model is mostly
rejected. Rejection frequencies are not smaller than 66%, and increase to 90% for banks with
high-risk systemic profile, as proxied by any of the indicators considered. This result provides
massive statistical support to the hypothesis that the SMRP of the system exhibits some form
of non-linearity, particularly, in large-scale, complex banks. On the other hand, the rejection
frequencies of Hg sy are sizable, but much more moderate than those of Hy gy, suggesting
that adding further parametric structure to the linear model succeeds in capturing systemic
interdependence more accurately. In particular, the unconditional rejection frequency of Hoy_asym
against the more general specification analyzed here is 45.02%. There is little evidence of
patterns on why this test is accepted or rejected, since this proportion remains remarkably
stable when conditioning along the quartiles of the SIFI-related variables.

While imposing constant marginal responses for either negative or positive returns may not
be completely accurate, the results show that this model is not unreasonable from a parsimo-
nious perspective. In this context, the results from testing Ho gqr0ss and Ho gqGain can provide
greater insight on characteristic shape of the SMRP. The null hypothesis Hy 41055 shows the
lowest rejection ratios among the different composite hypotheses analyzed. For instance, for
banks in the top quartile of TA, the rejection ratio of Hy ggress is 20%, suggesting that the sys-
tem’s sensibility against losses is stable for most of the large banks. Similar evidence arises under
STWSF-sorting (20.95%) and OBSI-sorting (23.81%). The rejections frequencies of Hy ggr0ss
are slightly greater for small banks (e.g., it is 34.58% for the bottom quartile of size), which is
consistent with greater heterogeneity in this class of banks. This result fully agrees with the
pattern reported in Figure 1; see also Table 3. In particular, the SMRB of the system for the
class of small banks tends to be exhibit on average positive and significant coefficients only
when negative shocks are large. In contrast, for moderate shocks in the upper quintiles, the
coefficients that characterize the average SMRP are not significant. Finally, the rejection ratios
of Hy gyGain are small, but tend to be much larger than that Hy gy10ss- As in the previous case,
this is nothing but the natural reflection of the general picture that emerges from Table 3 and
Figure 1, since, in general terms, it is necessary to consider fairly large positive shocks to cause

a co-movement in the system in a stressed scenario.
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The overall picture that emerges from this analysis strongly rejects the hypothesis of a
constant MRP which would be consistent with the constant-response model in Adrian and
Brunnermeir (2010), particularly, for banks characterized by SIFI-related features. The model
with asymmetric MRP characterized in Lépez-Espinosa et al. (2015) is more accurate from a
parsimonious perspective. Nevertheless, a more precise picture can generally be captured when

the parameters are allowed to be freely determined across different categories of shocks.

4.3 Proportionality in the U.S. financial sector

The 2010 Dodd-Frank Act set a $50 billion demarcation line in assets to identify systemically
important institutions in the U.S. financial system. Firms with assets above this threshold are
automatically designated for tighter Federal Reserve oversight and must comply with special
requisites such as participating in the annual stress tests. The choice of this particular threshold
qualifies the largest banks in the industry, but nevertheless has been deemed as arbitrary
and excessively conservative for the detractors of this legislation. In May 2015, the Banking
Committee of the U.S. Senate proposed a draft for setting new legislation on the sector in which
the critical threshold would be raised to $500 billion, giving the Federal Reserve the right to
apply enhanced supervisory requirements to banks with assets between $50 billion and $500
billion. Because of its potential impact on the stability of the financial system, this initiative
has found a strong opposition and it there is a fierce debate on whether the requirements of
the Dodd-Frank Act should be relaxed or not.

Using the econometric methodology implemented in our analysis, we can address the sen-
sitivity of the system to banks characterized by different sizes (as determined by the median
of total assets) around these threshold levels. To this end, we determine the median MRP of
the system against banks with a time-series median of TA falling in any of following categories:
med(TA) larger than $250 billion; med(TA) between $100 and $250 billion; med(TA) between
$50 and $100 billion, and med(TA) smaller than $50 billion. Table 7 below reports the main re-
sults from the estimation of the piecewise-linear-threshold model (2) at the shortfall probability

7 = 0.05 with £ = 4 as in the previous section.
[Insert Table 7 around here]

The picture that emerges from this analysis broadly agrees with that discussed in the previ-
ous section, showing that shocks originated in large banks consistently spill over the system in
a stressed scenario, whereas the system is significantly more relient against shocks in small and
medium-sized banks. The empirical shape of the MRP exhibited by the system against shocks
to banks with assets in the region in dispute does not generally support the suitability of a
different treatment given to these banks under the argument that they do not pose a threat

to the system. Whereas it may true that for certain cases that the burden of carrying out
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stress tests annually and other of the tough requirements may exceed the beneficits for stabil-
ity of the system, and that it could be harmless to slightly raise this limit to provide further
proportionality, or, alternatively, relax some of the requirements (e.g., conducting stress tests
bi-annually), the evidence in this paper does not support the convenience of dramatic changes
in the regulation and advises, at very least, for the convenience that the Federal Reserve retain

the right to implement enhanced supervision.

5 Concluding remarks

Under stressed conditions, idiosyncratic shocks originated in small and medium sized-banks
—which do not pose a serious concern for the integrety of the financial system in normal
conditions— can spill over and affect other banks, which has motivated a considerable attention
from regulator and academic researchers. Nevertheless, since the econometric modelling of sys-
temic risk is a relatively new field, several questions remain unsolved. In this paper, we have
analyzed if the marginal response that features tail comovements between the banking system
and individual banks can be characterized by constant responses or exhibit size-dependent non-
linear patterns. To this end, we have implemented a piecewise-linear threshold model on US
banking data building on a generalization of the CoVaR setting of Adrian and Brunnermeier
(2016) to explicitly accomodate heterogenous responses. This analysis brings new empirical
evidence on the vulnerability of the financial system and the suitability of constant-response
models used in the literature.

For large banks, characterized by a large volume of total assets and liabilities and intense
activity in short-term wholesale markets, our analysis reveals that the average marginal re-
sponse function of the system is fairly sensitive even to small negative shocks, i.e., thereby
underlining the relevance systemic interconnnections between these firms and the whole sys-
tem. For the vast majority of large-scale banks, the assumption that these systemic links are
constant independently of the size of the shock turns out to be restrictive and is largely rejected
in statistical terms. Consistent with Lopez-Espinosa et al. (2015), our analysis reveals that a
major consideration in the CoVaR modelling is whether shocks to individual banks are positive
or negative. Whereas the tail of the loss function of the system exhibits a small sensitivity
to positive shocks, even small negative shocks feed in the system. Our analysis reveals that
the marginal response of the system, conditional to the sign of the shock, is remarkably stable
for most banks analyzed, which generally supports the empirical suitability of the so-called
asymmetric CoVaR model by Lépez-Espinosa et al. (2015). Nevertheless, for a significant
share of banks, introducing further heteregeneity in parameters leads to improvements. On the
other hand, for the group of small banks in the sample typically characterized by traditional

lending activities and small size, the analysis of the marginal response profile that features
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tail-comovements also reveals non-linearities, but only large negative shocks are able to affect

the whole financial system.
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6 Figures and tables

Figure 1. Cross-sectional medians of the parameter estimates of the coefficients {52-_ (T)}jzl
and {67 (7‘)};:1 (grey bars) that characterize the MRP of the system at 7 = 0.05 against
standardizes shocks to banks in size-sorted Top and Bottom quartiles reported in Table 3.
Blue dotted-dashed lines show bootstrapped-based 95% confidence intervals for the median.
The first five classes in the horizontal axis correspond to the quintiles X, ..., X; 5 of negative
returns, whereas the remaining five clases correspond to the quintiles X;fl, e X;f5 formed by

positive returns.

Top quartile of banks sorted by total assets, t = 0.05

0.06 ‘ x| ‘ ‘ ‘
g o004 = —
B | Beeeei gieeeettt |-
£ el Et .. ... a
3 0021 REX  TETT N P |- ... - 4
5 R SLUITITE NN
=] ome e BT
2 o _ [mett il
4 ;-
<
© 002 - -
I I I I I I I I I I
1 2 3 4 5 6 7 8 9 10
Bottom quartile banks sorted by total assets, t = 0.05
0.06 T T T T T T
o.o
§ 004 .
E -'o' .
£ .
5 002~ e . B
5 [ XRIrrrree Weoeococons M ‘B-....
= ®--bbeem, | m—m—m—m—m— | ||| Titsee. [ R .
. Pl SR
a | T e e [ IR
g ‘.. .-
-0.02 B
I I I I I b I I I I
1 2 3 4 5 6 7 8 9 10

Classes of negative and positive (standardized) returns

19



Figure 2. Cross-sectional medians of the parameter estimates of the coefficients {52-_ (7‘)}?:1
and {6; (1) }jzl (grey bars) that characterize the MRP of the system at 7 = 0.05 against shocks
to size-sorted banks in the Q3 and Q2 reported in Table 3. See caption in Figure 1 for details.
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Figure 3 Cross-sectional medians of parameter estimates of the coefficients {(5; (T)}jzl and
{67 (1) }35:1 (grey bars) that characterize the MRP of the system at 7 = 0.05 against shocks to
banks sorted by short-term wholesale funding belonging to the Top and Bottom quartiles re-
ported in Table 4. Blue dotted-dashed lines show 95% bootstrapped-based confidence intervals

for the median. See caption in Figure 1 for details.
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